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The order~lisorder transition in a lattice hole model of a polydisperse dense system of semiflexible chain 
macromolecules is studied within the mean-field approximation and by Monte-Carlo methods. The polymer 
chains consist of 'stiff' or 'flexible' monomer units which associate at a given density and temperature in 
the process of reversible equilibrium polymerization. The system goes from an ordered state of parallel 
infinite rods into a lower density state of differently long disoriented chains at a temperature which is 
influenced by the chain stiffness and by the ratio between inter- and intrachain interactions. The mechanism 
of the transition is different from that of Flory and represents rather a polymerization transition. 

(Keywords: polymerization; polydisperse dense polymer system; semiflexible chains; order-disorder transition; Monte-Carlo 
simulation) 

INTRODUCTION 

The statistical thermodynamics of semiflexible chain 
molecules has remained a long-standing problem in 
polymer theory for several decades. The problem also 
concerns related fields, such as the nature of the glassy 
state, the physics of liquid crystals, etc. In the original 
papers 1'2 by Flory it was suggested that dense systems 
of semiflexible polymer chains should exhibit a state of 
parallel order, denoted by the term 'crystalline', con- 
sisting of stiff rod-like macromolecules and induced 
mainly by their steric repulsion. It was predicted that a 
first-order phase transition, reflecting the simultaneous 
softening and disorientation of the chains, should occur 
at higher temperature, linking the ordered state with that 
of partial disorder (polymer melt). According to Flory's 
model, this phase transition is due primarily to intra- 
molecular forces which determine the mean flexibility of 
the chains, f, whereas the cohesion energy, responsible 
for the presence of voids (holes) in the hypothetical lattice 
at any temperature T~0 ,  is assumed to be of minor 
importance. In an important development, Gibbs and Di 
Marzio 3 used Flory's expression for the configurational 
entropy of the polymer melt (polymers are known as very 
good glass formers) to show that vitrification, tradition- 
ally believed to be of kinetic origin, may be interpreted 
as a second-order phase transition of purely thermo- 
dynamic nature. This interesting idea has been addressed 4 
up to now although the validity of Flory's treatment has 
frequently been questioned 5 s  and the second-order 
nature of the glass transition shown to result from 
erroneous negative values in Flory's configurational 
entropyg-11. 

The controversy concerning these analytical treatments 
as well as unresolved questions connected with the nature 
of the glass transition have naturally led to numeric 
experiments as a testing ground for various models, 
reflecting meanwhile the major role which computer 
simulations now play in statistical physics. Thus one of 
the important results, found in Monte-Carlo (MC) 
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simulations by Baumg/irtner 12-14, states that for a dense 
system of fnite semiflexible lattice chains an equilibrium 
state of long-ranged orientational order does not exist 
for vanishing intermolecular interactions. The glass 
transition of model polymer melts has indeed been 
observed in other numeric experiments 15. The computer 
modelling of concentrated polymer solutions, however, 
is a challenging task even for modern supercomputers 
because of extremely slow dynamics of the macro- 
molecules imposed by kinetic constraints and originating 
from the number of forbidden configurations created in 
the course of a simulation. In the vicinity of the glass 
transition it appears virtually impossible, therefore, to 
separate the kinetic effects due to the topological 
connectivity of the polymer chains from 'hidden' thermo- 
dynamic phenomena reflecting a possible phase transi- 
tion which may be observed only if the system attains 
equilibrium. 

An additional motivation to address this issue is of a 
more practical nature. The problems of equilibration and 
sufficient statistics in the numeric experiments with dense 
polymer systems are also essential for materials scientists 
eager to find the typical structure elements, responsible 
for a particular type of thermodynamic behaviour, 
observed in laboratory experiments. Establishing such 
dependences could facilitate the development of a 
classification scheme of the structure of complex liquids 
with respect to the main structural units active at various 
temperatures. 

Therefore, in an attempt to overcome kinetic restric- 
tions, the configurational statistics of polymer melts is 
studied in the present MC investigation by an alternative 
and much faster approach, in which one automatically 
generates only allowed configurations of the whole 
system by breaking the connectivity of the chains. This 
may be accomplished if all segments of the macromole- 
cules are considered as residing in independent monomer 
states (IMS), which are either 'stiff' or 'flexible', whereby 
neighbouring monomers may fuse, forming the backbone 



Table 1 Independent  monomer  states at a lattice site in two 
dimensions 

II = II ~ II ~ II s 11 6 II 7 

+ + + + + + ÷  

of a polymer chain. This approach was introduced 
originally by Jaric and Benneman 16 and developed later 
for the study of polydispersity of polymer melts in the 
process of equilibrium polymerization 1~ 19 of living 
polymers such as sulphur and selenium. A new and 
more realistic feature in the model is the introduction of 
the interchain forces, which, contrary to the strong 
(335-419 kJ mol-1) covalent intrachain forces, are given 
by weaker (442  kJ mo1-1) van der Waals energy bonds 
and allow for the existence of free volume (holes) in the 
lattice. Some simple considerations show that there are 
altogether three energy parameters, responsible for 
changing molecular weight (polymerization), density and 
'stiffness' of the chains, which govern the structural 
properties of the system at varying temperature 2°. The 
relative 'strength' of these parameters and their interplay 
determine the rich thermodynamic behaviour of the 
system which has been partially investigated in this 
work by means of numeric simulation and mean-field 
approximation (MFA) consideration. 

THE MODEL 

Within the framework of the present study the conforma- 
tional statistics of a polydisperse system of semiflexible 
polymer chains is studied using an IMS lattice model, 
similar to that of 3aric and Benneman 16, which also 
accounts for the existence of unoccupied sites (free 
volume) at thermal equilibrium. 

A regular lattice is considered, each site of which is 
empty or occupied by a (bifunctional) monomer with two 
strong (covalent) 'dangling' bonds, which point along 
separate lattice directions. Depending on these directions 
and on the lattice co-ordination number, there can exist 
q -  1 possible states of the single monomer unit and one 
more is assigned to an empty site (hole) in the lattice. 
Thus one deals actually with an asymmetric q-state Potts 
model 21 (q = 7 for the square lattice and q = 17 for the 
cubic lattice) whereby flipping of Potts spins corresponds 
to reforming the polymer chain. 

Enumerating the states which may occupy a site in a 
square lattice, for example, from 1 to 7, one can represent 
the IMS graphically as shown in Table I (no symbol 
stands for a hole). Due to bifunctionality, the two 
dangling bonds of each monomer (states 1-6) extend 
from the site half-way along different lattice bonds. 

The first two states are then referred to as 'stilt whereas 
the four bent monomers ensure the semiflexibility of the 
chain and are assigned an additional activation energy 
a > 0 .  This is essential for many real polymers in which 
the rotational isomeric states (e.g. trans and gauche) are 
not equally favoured energetically. 

Dangling bonds of nearest-neighbour monomers, 
pointing toward one another, fuse, releasing energy v > 0 
and forming the backbone of a polymer chain in the 
process of equilibrium polymerization. 

The third energetic parameter, w, reflecting the weak 
(van der Waals) interchain interactions, is responsible for 
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the creation of empty lattice sites (holes) in the system 
and thus governs the variation of its density with 
changing temperature, T, or chemical potential,/~. 

The Hamiltonian of the system can be written then as: 

H= - ~ ~ij(v,w)~,®~j-~(l~+e,)ff, (1) 
i < j  i 

where the interaction constant ~ij(v, w) between nearest- 
neighbour IMS ffi and (Sj (e.g. states 1 and 3, see Table 1) 
depends on their mutual position: ~ij=w if state 1 is 
the left neighbour of state 3 and ~ij= v if state 1 is the 
right neighbour of state 3. In the case of a hole ff~=0 
whereas for the IMS 1 6 all occupation numbers ($i= 1. 
The local energies e~=a for the states q=3-6 ,  and 
gl ~-,~2 ~ 0 .  

The ground states of this model depend on the relative 
strengths of the three energetic parameters a, v and w. 
In order to keep closely to realistic cases, we consider 
here only positive activation energies a > 0  (i.e. only 
straight rigid monomers at zero temperature) and 
attractive (positive) inter- and intrachain interactions v 
and w. The ground state phase diagram in terms of/~ and 
the ratio v/w is simple, as shown in Figure 1. 

Evidently for v/w> 1 and a > 0 ,  the possible ground 
state represents an ordered state containing infinite (in 
the thermodynamic limit) straight parallel rods. On a 
square lattice this state is doubly degenerate due to the 
two possible orientations of the rods and can be 
characterized by an order parameter, ~=1C,-C21,  
reflecting the preferential concentration of one of the 
states q=  1 or 2. 

For v/w< 1 polymerization will not be energetically 
favoured and there will be no anisotropy of the existing 
phase. The isotropic phase at TO0 contains small, 
short-living aggregates (short chains) and at T = 0 should 
adopt a chequer-board ordering which is not degenerate 
and minimizes the internal energy. 

BRAGG-WILLIAMS MEAN-FIELD RESULTS 

With the concentrations Ci of the IMS and with that of 
the holes, C o, one can write the MFA free energy of the 
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Ground  state phase diagram for a > 0 ,  w > 0  and v > 0 :  (I) 
parallel rigid chains; (II) chequer-board ordering of stiff monomers  of 
type q = 1 and 2; (III) empty lattice 
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system as the sum of the internal energy: 
6 

U = M  Z eiCi (2) 
i=1 

where M denotes the number of sites in the lattice and 
~i is the average energy per site occupied by a monomer 
in state i, and of the entropy: 

6 
S = - M k B  ~ Ci lnCi  (3) 

i=o 

In terms of v, w and a the energies ~i of the IMS read: 

el = el - (1 - Co)(3w + v)/2 + (C 1 - C 2 ) ( w -  v)/2 

~2 = ~2 - (1 - C0)(3w + v)/2 + (C 2 - C1)(w - v)/2 

e3 = 8a - (1 - Co)(3w + v)/2 + (C  3 - C 5 ) ( w  - v)/2 

e4 = 8 4 -  (1 - Co)(3w + v)/2 + (C4 - C6)(w-  v)/2 (4) 

e5 = 81 - (1 - Co)(3w + v)/2 + (C 5 - C 3 ) ( w  - v)/2 

~6 : gl  - -  (1 - -  Co)(3w + v)/2 + ( 6  6 - -  C4)(W -- v)/2 

The local energies el = e2 = # ,  a n d  83 = 84. = 85 = 86 = ~ -[- 0 .  

For F =  U - T S  we obtain (the Boltzmann factor, 
kB = 1): 

F / M  = a(C 3 + C4 + C5 + C 6) 

- #(1 - C o ) -  (1 - Co)Z(3w + v)/2 

- -  [-(C 1 - -  C2)  2 - -  (C  3 - -  C5)  2 - -  (C  4 - -  C6)2]02--W)/2 
6 

+ T  ~ C i lnCi  (5) 
i=0 

For the pressure of the system P = - 1/Vo(SF/SM)r, with 
the volume of a lattice cell being v o, one obtains: 

Pro = - (1 - Co)2(3w + v)/2 - [(C 1 - C2) 2 

- ( C 3  - C 5  )2 _ ( C  4 _ C 6 ) 2 ]  (v - w)/2  + T In C o ( 6 )  

It is seen from equations (5) and (6) that the anisotropic 
term in the free energy vanishes when the difference v - w 
goes to zero since F does not depend then on the order 
parameter ~ = IC1-  C21 (cf. Figure 1). 

For a given p and T, the equilibrium state is 
determined by the minimum of the free energy per 
site, F / M  = U / M -  T S / M ,  with respect to the six variables 
Ci (the concentration Co is not an independent variable). 
Thus the following set of equations determines the 
equilibrium IMS concentrations: 

- (3w + v)(1 - C o ) -  ( v -  w)(C1 - C2) + T ln(C1/Co) = # 
- (3w + v)(1 - Co) + ( v -  w)(C1 - C2) + T ln(C2/Co) = I~ 

a -  (3w + v)(1 - Co) + ( v -  w)(C 3 - C5) + T ln(C3/Co) = tz 
- (3w + v)(1 - C o ) -  ( v -  w)(C 3 - Cs) + T ln(Cs/Co) = # 

a -  (3w + v)(1 - Co) + ( v -  w ) ( C 4 -  C6) + T l n ( C J C o )  = t~ 
a -  (3w + v)(1 - C o ) -  ( v -  w)( C ,~-  C6) + T ln( C6/Co) = 1~ 

(7) 

Generally, on symmetry considerations, both in the 
anisotropically ordered phase (polymer crystal) as well 
as in the disordered isotropically symmetric phase (melt) 
one should have C a = C 5 and C4 = C6. For  the melt, in 
which additionally ff =0,  equation (6) then describes a 
phase transition between a condensed phase and a gas 
phase at temperatures below T~ = (3w +v)/4. Evidently, 
for w<<v these temperatures are rather low so as to 
destroy the crystalline state where the energy per site is 
v + w .  Therefore one would expect that with realistic 
values of w and v (w/v<~O.1) the system will jump from 
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Figure 2 (a) Phase diagram for the case tr=0.5, w=0.1 and v=2.0. 
(b) Variation of density and flexibility with temperature for/~ = - 2  

S 

an ordered state to a supercritical state of the disordered 
system. Figure 2 shows some MFA results which follow 
from numerical minimization of the free energy F. Since 
MFA predictions, concerning the order of the phase 
transition, are generally unreliable, especially in two 
dimensions, the first-order transition, shown in the phase 
diagram in Figure 2a, should be considered with caution. 
More interesting is the jump in the density at the 
transition temperature (Figure 2b), which is influenced 
by the stiffness of the chains. Indeed, equation (7) yields 
for the melt (where C1 = C 2 ,  C 3 = C 5  and C 4 = C 6 ) :  

# = - (3w + v)(1 - Co) + T ln[(1 - Co)/Co] 
- Tln[2 + 4 e x p ( -  a/T)]  (8) 

It is clear from equation (8) that at constant Co and T 
with increasing a the/z is lowered, or vice versa, for fixed 
# and T increased tr should correspond to smaller density 
of the disordered phase. One should expect, therefore, 
the density change at the phase transition to rise with 
increasing stiffness of the chains, which is indeed observed 
in Figure 2b. 

In MFA this transition between anisotropically ordered 
parallel rod-like infinite chains and the polydisperse 
mixture of disoriented oligomers is found to be of first 
order with no evidence for the existence of a critical point. 
In this aspect the model resembles the conventional 
phase transition of melting. One of the most interesting 
results, however, appears to be the fact that the phase 
transition is not necessarily accompanied by a steep 
increase of the number of flexible ('bent') monomers. 
Thus the model describes a mechanism of 'melting' which 
is not due to thermal disorientation of the polymer chains 
and therefore differs essentially from the mechanism 
envisaged by Flory 1'2. The other two processes - -  
spontaneous polymerization and/or  creation of holes - -  
which characterize this phase transition are analysed on 
the basis of the numeric experiments reported in the next 
section. 
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Figure 3 Schematic diagrams of the system with u=O.5. ~~0.1 and v =2.0 at various times 
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(f) A polymer melt at T=O.5 after 2 x lo5 MCS 
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MONTE-CARLO RESULTS 

The system defined above was studied using square 
lattices with linear size L= 10, 20, 30, 40, 50 and 60 
with periodic boundary conditions for most of the 
calculations. A number of runs in three dimensions with 
L =iO, 30 and 40 were also performed. Since three- 
dimensional runs were seen to lead to more pronounced 
first-order nature of the phase iiaiisitiOn with no other 
qualitative differences, as compared to the case of two 
dimensions, in the following we concentrate on simu- 
lations of a square lattice. A standard Metropolis 
importance-sampling MC methodZ2 was applied to 

obtain various thermodynamic quantities, the number of 
MC steps per site (MCS) depending on the system size 
and on the state point under consideration. Bulk 
quantities, such as the internal energy, density, specific 
heat and compre&i!itv. WP~P m~g~llr~ 1~0~~ n m---A ,, .7_-- “‘VU”UIUU UOU,~ (1 gya,,u 
ensemble MC simulation. Additionally, the distribution 
of configurational properties such as order parameter d/i 
polymer weight (chain length) and average flexibility of 
the chains, defined as number of bent monomers over 
the total number of monomers,f = (1 - C1 - C,)/( 1 - C,), 
was studied. Most of the calculations were carried out 
on the Siemens-Fijitsu VP100 vector computer at the 
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University of Keiserslautern. A fully vectorized chequer- 
board algorithm with a performance of roughly 7 x 105 
updates per second was used. 

Figure 3 shows a series of diagrams of the system taken 
over a logarithmic time-scale after a quench from a 
random state at T = oo to a T below the phase transition 
(T = 0.320-t- 0.002). Evidently, the system rapidly poly- 
merizes into a polycrystalline domain structure which 
eventually develops to an ideal crystal. Although the 
kinetics of phase separation here is not realistic, it proves 
that the model is capable of overcoming one of the main 
handicaps of many conventional models, namely, the 
kinetic restrictions due to the topological connectivity 
of the macromolecules which is responsible for the 
extremely slow dynamics, especially at higher densities. 
Thus any configuration of the monomers on the lattice 
sites is automatically an allowed configuration of the 
whole system and the genuine nature of the thermo- 
dynamic phase transition may be revealed reliably by 
means of ensemble sampling. 

The influence of (r on the phase transition is shown in 
Figure 4. For tr= 0.01 (which here corresponds to 
completely flexible chains) no phase transition is found 
and the system is expected to freeze into a disordered 
ground state. Evidently, for semiflexible chains with 
a>0.1 the phase transition temperature, marked by a 

maximum in the specific heat Cp, is gradually shifted to 
higher values with growing tr. The temperature depend- 
ence of the density closely resembles the MFA results 
(Figure 2), whereby the abrupt change grows with 
increasing a. However, the lack of correlation between 
the jump of the density at the phase transition and the 
gradual variation of f of the chains at the critical 
temperature, T~, especially for tr=4, implies that dis- 
orientation of the chains because of increased flexibility 
alone is not responsible for the observed phase transition. 
One observes rather a sharp drop in the mean chain 
length at the phase transition at any a. Therefore for the 
set of inter- and intrachain interactions w = 0.1 and v = 2 
the nature of the phase transition appears to be more 
closely connected to the creation of holes, on the one 
hand, and to the rapid variation of polymer weight, on 
the other hand, rather than to disorientation of long 
semiflexible polymer chains. 

This conclusion, however, must be applied with 
caution. In other runs (not shown) with different energy 
parameters, e.g. a =  1, w=0.1 and v=4, the peak in Cp 
at T ~ 0.8 is very small and there is also no visible change 
in the density at the transition temperature while the 
average chain length is observed to drop and the mean 
flexibility to rise abruptly. In a further run with increased 
stiffness a =  10, w=0.1 and v=4 the peak in Cp shifts to 
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T~1.85 albeit remaining very small while the mean 
flexibility at the transition point remains negligible. One 
may thus claim that the order-disorder transition in 
this model is always accompanied by a steep change in 
the molecular weight from the 'crystalline' state with 
nearly infinitely long chains to a 'melt' consisting of a 
mixture of oligomers. Thus the genuine nature of the 
phase transition seems more closely connected with the 
process of polymerization, rather than with 'melting'. 
Moreover, this transition is not necessarily related to 
softening of the chains and the main contribution to the 
latent heat of the phase transition is due to the creation 
of free volume (holes) in the system. 

The free volume variation is also related to the change 
in the average length of the chains, as shown in Figure 5 
where the mean length versus density relationship is 
plotted for temperatures both above and below the phase 
transition T~=0.32. Evidently this reflects the proba- 
bilistic nature of the equilibrium polymerization whereby 
sufficient number of building units must be available for 
the reaction of polymerization to occur. It is also possible 
that the inclusion of long-range forces might quantita- 
tively change this picture. 

As suggested by the MFA results, the ratio v/w is also 
expected to influence the phase transition, especially 
when v/w tends to unity. This is indeed observed and 
demonstrated in Figure 6 where Cp for v = 2  and a=0 .5  
is plotted for four values of w in logarithmic coordinates 
in order to show all curves simultaneously. Evidently the 
peak in Cp is rapidly diminished as w approaches v and 
polymerization is no longer favoured. 

The polydispersity of the system for a certain set of 
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interactions, o, w and v, is described by a cluster size 
distribution P(s, T) giving the number of chains with 
length s at temperature T above the phase transition 
temperature. It is seen from Figure 7a that the equilibrium 
size distribution is very well described by an exponential 
function: 

P(s, T) = P(1,  T )e  -~m~s-~l (9) 

where the decay rate ct(T) is shown in Figure 7b to 
deviate slightly from the Arrhenius type relationship 
~(T)occonstant/T. These results confirm earlier mea- 
surements ~9 of a model system with no free volume. The 
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Figure 6 Dependence of Cp on temperature for a =  1.0, v=2.0  and 
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exponential form of P(s,  T )  agrees also with the form 
derived from the steady-state solution of coupled kinetic 
equations 23 (Smoluchowski equations with fragmenta- 
tion terms) for living polymers. At low temperatures, 
T=0 .35  and 0.40, there are also visible oscillations in 
the size distributions at small s whereby even oligomers 
occur more frequently than odd ones. This effect appears 
to reflect the fact that cyclic short chains are energetically 
favoured and is an artifact of the square lattice. 

Concluding this section, it should be mentioned that 
the statistics used in the current MC simulation (3 x 10 5 
MCS), although two orders of magnitude higher than in 
previous studies I 8, still proves insufficient to obtain clear 
cut evidence concerning the order of the phase transition 
in two dimensions. In contrast with earlier measurements 
of a similar model17-19 no hysteresis was observed in the 
temperature dependence of thermodynamic properties. 
Also a finite size analysis of the second derivatives, such 
as compressibility or specific heat, for sizes of the square 
lattice L = 1 0 - 6 0  and the energy parameters, a=0 .5 ,  
w=0.1,  v=2.0  (Figure 8), could not be used to produce 
reliable estimates of critical exponents. Thus the long- 
standing problem 24-28 about the connection between 
'polymerization transition' (the point of abrupt growth 

of polymer length) and standard phase transitions, and 
specifically the appropriate universality class still remains 
open. In the somewhat controversial predictions between 
n = 0  24'25 and n=126-28 universality classes (self- 
avoiding walks on a lattice correspond to the limit n ~ 0 )  
of the n-vector model the observations here do not 
confirm the claimed n =  1 (Ising) critical behaviour 27. It 
remains to be seen in further investigations whether the 
inclusion of free volume and interchain interactions in 
the model are responsible for these deviations. 
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